

ANALISI SCOPE 1 e SCOPE 2 2024

ALA è una società del Gruppo NSA specializzata nel supportare le imprese ad intraprendere un percorso di crescita tramite la finanza agevolata e la sostenibilità.

INFORMAZIONI			
SOCIETÀ RENDICONTANTE RESPONSABILE DEL RAPPORTO	G.M. TECNORAPPRESENTANZE S.R.L. info@gmtecno.it		
SOCIETÀ REDATTRICE	ALA S.r.l. sostenibilità@grupponsa.it		
ANNUALITÀ CONSIDERATA	2024		
DATA DI EMISSIONE DOCUMENTO	27/08/2025		

SOMMARIO

Termini e definizioni	5
Acronimi	6
Rapporto di sintesi	7
Principi di rendicontazione	9
Capitolo 1: Descrizione generale degli obiettivi dell'organizzazione	10
1.1 Descrizione aziendale	10
1.2 Obiettivo dell'analisi	11
1.3 Frequenza del rapporto	11
1.4 GHG rendicontati	11
1.5 Confini organizzativi	12
1.6 Approccio di consolidamento	12
Capitolo 2: Confini di rendicontazione	13
Valutazione dei confini	13
2.1 Emissioni dirette (Scope 1)	13
Tabella riassuntiva	14
2.2 Emissioni indirette derivanti da energia importata (Scope 2)	14
Tabella riassuntiva	15
2.3 Emissioni escluse dal rapporto	15
Capitolo 3: Inventario di GHG quantificato delle emissioni e rimozioni	17
3.1 Tabella riassuntiva	18
3.2 Approccio di quantificazione utilizzato	20
3.2.1 Modello di quantificazione	20
3.2.2 Fattore di emissione dell'acquisto di energia	21
3.2.3 Limiti del modello	21
3.3 Anno di riferimento	21
3.4 Elenco emissioni	22
3.5 Emissioni Biogeniche	34
Capitolo 4: Qualità dei dati	35
4.1 Introduzione all'analisi di qualità dei dati	35
4.2 Limitazioni dell'analisi dell'incertezza	35
4.3 Stima qualitativa	36
4.4 Valutazione dell'incertezza	39

Capitolo 5: considerazioni finali	40
5.1 Tracciabilità delle prestazioni interne	40
5.2 Risultati	42
5.3 Verifica dell'inventario	43
5.4 Conformità col GHG Protocol	43
ALLEGATO 1 – Assunzioni e ipotesi	44
ALLEGATO 2 – Dati utilizzati	46

TERMINI E DEFINIZIONI

Gas ad effetto serra: gas atmosferico con la capacità di assorbire e rilasciare radiazione infrarossa, trattenendo il calore nell'atmosfera terrestre. Questo processo contribuisce all'aumento della temperatura globale.

Potenziale di riscaldamento globale: Contributo all'effetto serra di un gas serra relativamente all'effetto della CO₂.

Fattore di emissione: coefficiente di derivazione delle emissioni di GHG a partire da uno specifico dato di attività.

Dato di attività: valutazione numerica che riflette la quantità di gas serra emessi o assorbiti durante un'attività specifica.

Dati primari: misure quantitative dirette o calcoli derivati da tali misure, che rappresentano un processo o attività specifica.

Dati specifici del sito: dati primari ottenuti all'interno dei confini dell'organizzazione.

Dati secondari: dati ottenuti attraverso sorgenti diverse rispetto ai dati primari

Anidride carbonica equivalente: unità di misura utilizzata per comparare l'effetto serra dei vari gas serra attraverso l'utilizzo del potenziale di riscaldamento globale.

Incertezza: misura identificativa della dispersione dei valori attribuiti alla quantificazione a cui è associata.

Installazione: impianto singolo o serie di impianti o processi di produzione che possono essere definiti all'interno di un singolo confine geografico, di un'unità organizzativa o di un processo produttivo.

Emissioni dirette: emissioni di GHG da sorgenti all'interno dei confini organizzativi dell'organizzazione

Emissioni indirette: emissioni di GHG da sorgenti all'esterno dei confini organizzativi dell'organizzazione.

Scope 1: Emissioni dirette di gas ad effetto serra. Esempi di attività che generano emissioni dirette includono, ma non sono limitate a, emissioni provenienti da combustione stazionaria, da auto aziendali, da processi industriali.

Scope 2: emissioni indirette di gas ad effetto serra derivanti dall'acquisto di energia. Queste emissioni sono associate alla produzione di energia (elettricità, calore, altro) acquistata dall'organizzazione.

Scope 3: altre emissioni indirette. Questa categoria comprende tutte le altre emissioni indirette legate ad un'organizzazione. Esempi di attività che generano queste emissioni indirette includono, ma non sono limitate a, emissioni provenienti dal pendolarismo dei dipendenti, dall'acquisto di merci utilizzate dall'organizzazione e dallo smaltimento dai rifiuti utilizzati dall'organizzazione.

ACRONIMI

GHG: gas ad effetto serra

CO_{2eq}: anidride carbonica equivalente

DA: dato di attività

FE: fattore emissivo

GWP: potenziale di riscaldamento globale

IPCC: intergovernmental Panel on Climate Change

AR5: quinto rapporto di valutazione dell'IPCC

CO₂: anidride carbonica

CH₄: metano

N₂O: ossido di azoto

NF₃: trifluoruro di azoto

SF₆: esafluoruro di zolfo

HFC: idrofluorocarburi

PFC: perfluorocarburi.

IEA: International Energy Agency

EEA: European Environment Agency

EPA: United States Environmental Protection Agency,

LB: Location-Based

MB: Market-Based

RAPPORTO DI SINTESI

OBIETTIVO

L'obiettivo della presente analisi è elevare consapevolezza della dirigenza aziendale sul quantitativo e la ripartizione delle emissioni rispetto alle varie sorgenti emissive dirette ed indirette dovute dall'acquisto di energia.

SPECIFICHE DELL'INVENTARIO

L'analisi dell'inventario GHG dell'azienda include tutte le attività svolte nella sede aziendale, come quelle operative, logistiche, amministrative e commerciali, per garantire un'analisi precisa e affidabile. L'approccio di consolidamento adottato si basa sul controllo operativo, focalizzandosi sulle emissioni sulle quali l'azienda ha il potere di decisione e di gestione, con l'obiettivo di valutare accuratamente l'inquinamento generato dalle sue attività dirette.

METODOLOGIA

L'inventario dei gas serra è stato quantificato utilizzando un approccio indiretto basato su fattori di emissione. Questo metodo consiste nel moltiplicare i dati di attività aziendale (come consumi energetici e utilizzo di materiali) per coefficienti standard di emissione, stimati o forniti da fonti riconosciute, al fine di stimare le emissioni di GHG associate alle diverse attività dell'azienda. Sono stati considerati tutti i principali gas serra presenti nel sesto rapporto di valutazione dell'IPCC.

RISULTATI

Nel 2024 le emissioni totali di Scope 1 e 2 sono pari a 27,2 t CO_{2eq} considerando un approccio location based, mentre salgono a 30,5 t CO_{2eq} se si considera un approccio market based (+11%) a causa dell'uso del residual mix italiano in assenza di garanzie d'origine. Le emissioni di Scope 1 derivano principalmente dai veicoli aziendali (86%) e dagli impianti di riscaldamento (14 %), con un aumento complessivo dell'8,1% rispetto al 2023. Lo Scope 2 è diminuito rispetto al 2023 dello 0,7% per una lieve diminuzione dei consumi elettrici totali.

La diminuzione dell'indicatore k_e (-2,6%) è legata alla crescita delle emissioni totali (7%) e alla crescita del fatturato aziendale (9,6%). Questo evidenzia che una lieve diminuzione delle emissioni in termini percentuali rispetto al fatturato, ma non in termini assoluti.

L'indicatore ks, pari a 0,161 rimane comunque molto inferiore all'unità, segnalando una maggiore incidenza delle emissioni dirette rispetto a quelle indirette da elettricità importata.

Le analisi escludono lo Scope 3, che potrebbe incidere significativamente sul totale delle emissioni.

TABELLA R1 – EMISSIONI PER SCOPE

	CO _{2eq,2023} [kgCO _{2eq}]	CO _{2eq,,2024} [kgCO _{2eq}]
Scope 1	21.676,16	23.424,89
Scope 2 Location-based	3.804,08	3.778,29
Scope 2 Market-based	7.367,17	7.041,55

TABELLA R2 – INDICATORI RILEVANTI

	2023 2024		Variazione %
k_e	0,00477 kgCO _{2eq} /€ _{Fatturato}	0,00465 kgCO _{2eq} /€ _{Fatturato}	-2,6%
k _s	0,175496228	0,16129371	-8,1%

k_e : emissioni per unità di fatturato aziendale.

 k_s : rapporto tra le emissioni di Scope 2 LB e le emissioni di Scope 1.

PRINCIPI DI RENDICONTAZIONE

Il presente documento è stato elaborato in conformità ai principi di rendicontazione del GHG Protocol, garantendo un'analisi rigorosa e affidabile delle emissioni di gas a effetto serra dell'organizzazione. In particolare, il report si basa sui seguenti principi fondamentali:

RILEVANZA

Le informazioni devono essere significative e pertinenti rispetto agli obiettivi del report, in modo da supportare le decisioni di chi utilizza il documento.

COMPLETEZZA

Il report deve includere tutti gli elementi rilevanti, senza omissioni significative, per offrire una visione chiara e completa della situazione.

CONSISTENZA

È fondamentale mantenere metodologie uniformi nel tempo, per consentire confronti affidabili tra periodi diversi e garantire la continuità nell'analisi dei dati.

TRASPARENZA

I dati e le metodologie devono essere presentati in modo chiaro e tracciabile, con spiegazioni esplicite su assunzioni, limiti e fonti di informazione utilizzate.

ACCURATEZZA

Le informazioni devono essere il più possibile precise, evitando sovrastime o sottostime, e riducendo al minimo le incertezze per garantire la credibilità del report.

CAPITOLO 1: DESCRIZIONE GENERALE DEGLI OBIETTIVI DELL'ORGANIZZAZIONE

1.1 Descrizione aziendale

L'azienda, con sede a Piacenza (PC) in via vittime Rio Boffalora 2, si occupa della distribuzione, in qualità di agenti e commercianti diretti, di prodotti destinati a reti di acquedotti, gasdotti, fognature, sistemi antincendio, irrigazione, depurazione e arredo urbano.

Non svolge attività di produzione o lavorazione, ma opera come rivenditore specializzato di materiali tecnici, tra cui tubazioni e raccorderie in polietilene, PVC e ghisa, con una presenza marginale di componenti in acciaio zincato e inox. I materiali sono destinati principalmente ai settori dell'acquedottistica, del gas e delle fognature. L'attività include anche la consulenza tecnica, con un supporto mirato nella scelta delle soluzioni più adatte alle esigenze del cliente.

Oltre a svolgere le funzioni operative, per pochi giorni l'anno, la sede centrale rappresenta anche un centro di formazione tecnica per saldatori specializzati su diversi condotti e tubazioni.

L'azienda è controllata al 98% dalla holding CAP SERVICE S.R.L.

Attualmente è operativa in due sedi:

- Via vittime Rio Boffalora 2, 29121, Piacenza (PC), sede operativa e magazzino
- Strada Bobbiese 22, 29122, Piacenza (PC), sede utilizzata come magazzino

Le attività presenti negli uffici riguardano principalmente le funzioni commerciali e amministrative. La sede principale è dotata di un impianto antincendio ad acqua, mentre la seconda sede è attrezzata esclusivamente con estintori. In entrambe le sedi non sono presenti impianti fotovoltaici.

I principali fornitori sono localizzati nel Nord Italia, mentre la restante parte è comunque composta da aziende italiane, con una quota marginale di fornitori esteri. La clientela è concentrata prevalentemente nelle province di Piacenza, Parma, Lodi, Cremona e Pavia.

Climatizzazione aziendale

Sono presenti impianti sia di riscaldamento che di condizionamento. La sede principale è dotata di una caldaia alimentata a gas naturale per il riscaldamento, mentre la sede secondaria utilizza un impianto a pellet.

In entrambe le sedi sono installati sistemi di condizionamento per il raffrescamento degli ambienti.

Parco veicoli

Il parco veicoli è composto da:

- un furgone
- tre auto aziendali a noleggio
- due muletti

Ad eccezione dei muletti elettrici, tutti i restanti mezzi sono alimentati a gasolio.

ID	TIPO SEDE	INDIRIZZO	ATTIVITÀ PRINCIPALI
1	Sede operativa e legale	Via vittime Rio Boffalora 2, 29121, Piacenza (PC)	Uffici commerciali e amministrativi
2	Sede secondaria	Strada Bobbiese 22, 29122, Piacenza (PC)	Magazzino di stoccaggio

1.2 Obiettivo dell'analisi

Nel corso dell'annualità 2025, G.M. TECNORAPPRESENTANZE S.R.L. ha intrapreso un'analisi delle emissioni 2024 di tipo Scope 1 e Scope 2 con l'obiettivo di elevare la consapevolezza interna sull'impatto ambientale generato dalle proprie attività. Questa iniziativa riflette l'impegno dell'azienda verso la sostenibilità e la responsabilità ambientale. Il rapporto, destinato ad essere un documento interno rivolto alla dirigenza aziendale, funge da strumento di valutazione per monitorare i progressi e stimolare un miglioramento continuo.

In questo contesto di crescente attenzione verso l'ambiente, G.M. TECNORAPPRESENTANZE S.R.L. ha scelto di affidare la redazione dell'analisi di inventario GHG ad ALA s.r.l., un'azione che dimostra la volontà di integrare competenze esterne altamente specializzate per ottimizzare la gestione delle proprie emissioni e rafforzare ulteriormente l'impegno verso un futuro sostenibile.

1.3 Frequenza del rapporto

L'azienda ha deciso di redigere il presente inventario delle emissioni di GHG per prendere coscienza della tipologia e del quantitativo di emissioni di tipo Scope 1 e 2, senza tuttavia stabilire una cadenza specifica.

1.4 GHG rendicontati

Nell'ambito dell'analisi ambientale, è stata effettuata una rendicontazione dettagliata delle emissioni dei principali gas serra, tra cui CO₂ (anidride carbonica), CH₄ (metano), N₂O (ossido di azoto), NF₃ (trifluoruro di azoto), SF₆ (esafluoruro di zolfo), nonché altri gruppi di gas serra come gli

HFC (idrofluorocarburi) e i PEC (perfluorocarburi). Questa valutazione è stata condotta utilizzando i valori di GWP (potenziale di riscaldamento globale) più aggiornati, forniti dal sesto rapporto di valutazione dell'IPCC (AR6). I potenziali di riscaldamento globale rivestono un ruolo fondamentale nella valutazione dell'impatto ambientale dei diversi gas serra, poiché consentono di confrontare gli effetti in modo standardizzato attraverso l'uso di un fattore correttivo specifico per ciascun tipo di gas.

TABELLA 1.4 - GWP DEI PRINCIPALI GHG

GAS EFFETTO SERRA	AR6 (2021)
CO ₂	1
CH₄ origine fossile	29,8
CH ₄ origine non fossile	27
N ₂ O	273
NF ₃	17.400
SF ₆	24.300

1.5 Confini organizzativi

È stato definito il confine organizzativo dell'analisi di inventario GHG includendo tutte le attività effettuate nella sede aziendale. Questo confine comprende le attività operative, logistiche, amministrative e commerciali.

1.6 Approccio di consolidamento

Nell'elaborazione dell'inventario dei gas serra (GHG) è stato adottato un approccio di consolidamento basato sul controllo operativo. Questo significa che l'analisi si concentrerà su emissioni sulle quali l'azienda ha un effettivo potere decisionale e di gestione. L'obiettivo è di valutare in modo accurato l'inquinamento generato dalle attività direttamente controllate dall'azienda.

CAPITOLO 2: CONFINI DI RENDICONTAZIONE

Valutazione dei confini

La scelta dei confini di rendicontazione permette di definire e categorizzare in maniera chiara e precisa l'insieme di emissioni ed eventuali rimozioni di GHG che sono rendicontate all'interno del documento.

Vengono riportate in seguito le categorie considerate ed analizzate per l'azienda rendicontante.

2.1 Emissioni dirette (Scope 1)

Questa categoria di emissioni include tutte le emissioni di gas ad effetto serra derivanti da sorgenti di GHG interne ai confini dell'organizzazione. Vengono specificate in seguito le sottocategorie scelte per classificare le emissioni dirette dell'azienda in oggetto.

EMISSIONI DIRETTE PROVENIENTI DA COMBUSTIONE STAZIONARIA

Le emissioni derivate da combustione stazionaria riguardano il rilascio nell'atmosfera di sostanze inquinanti provenienti dalla combustione di combustibili fossili o biocombustibili in impianti industriali, centrali elettriche, termiche e altre strutture fisse.

Per l'azienda oggetto della presente analisi vengono identificate all'interno di questa categoria le emissioni dovute a:

- Combustione di gas nelle caldaie
- Combustione di pellet nella stufa (per la sola quota parte non biogenica)

EMISSIONI DIRETTE PROVENIENTI DA COMBUSTIONE MOBILE

Le emissioni derivate da combustione mobile riguardano il rilascio nell'atmosfera di sostanze inquinanti provenienti dalla combustione di combustibili fossili o biocombustibili all'interno di attrezzature di trasporto, come macchine aziendali, autocarri, imbarcazioni o carrelli elevatori.

Per l'azienda oggetto della presente analisi vengono identificate all'interno di questa categoria le emissioni dovute a:

- Combustione all'interno dei veicoli aziendali

EMISSIONI DIRETTE FUGGITIVE

Le emissioni dirette fuggitive si riferiscono alla liberazione non intenzionale di sostanze inquinanti nell'atmosfera da parte di impianti industriali, strutture di produzione o altri processi che coinvolgono la manipolazione, il trasporto o lo stoccaggio di materiali. Queste emissioni possono derivare da perdite di gas, vapori o liquidi durante le operazioni di produzione, dalla dispersione di polveri o particolato durante la movimentazione di materiali sfusi, o da altri eventi non controllati.

Per l'azienda oggetto della presente analisi vengono identificate all'interno di questa categoria le emissioni dovute a:

- Fughe di gas refrigerante dalle unità di condizionamento

Tabella riassuntiva

Le fonti emissive identificate ed analizzate per quanto riguarda le emissioni dirette sono riassunte e classificate nella Tabella 2.1.

TABELLA 2.1 - EMISSIONI DIRETTE

Categoria	Sottocategoria	Fonte di emissione	
Emissioni dirette	Emissioni da combustione stazionaria	Caldaie	
	Emissioni dirette provenienti da combustione mobile	Veicoli aziendali	
	Emissioni dirette fuggitive	Impianti di condizionamento	

2.2 Emissioni indirette derivanti da energia importata (Scope 2)

Per quanto riguarda le emissioni indirette derivanti dall'acquisto di energia, a seguito di un'analisi dell'azienda oggetto della rendicontazione, si è scelto di analizzare e classificare le sorgenti emissive con le seguenti categorie, in quanto rappresentative di tutta l'energia importata dall'azienda.

EMISSIONI INDIRETTE DA ELETTRICITÀ IMPORTATA

Le emissioni indirette da elettricità importata si riferiscono alle emissioni di gas serra e altri inquinanti atmosferici associate alla produzione di elettricità acquistata dall'organizzazione. Queste emissioni si verificano durante la generazione di elettricità utilizzando fonti di energia quali carbone, gas naturale, petrolio o altre fonti non rinnovabili. Questa categoria non considera tutte le emissioni a monte

associate a combustibili utilizzati per la generazione di elettricità, le emissioni generate dalla costruzione della centrale elettrica e quelle prodotte dal trasporto e dalle perdite di distribuzione.

Per l'azienda oggetto della presente analisi vengono identificate all'interno di questa categoria le emissioni dovute a:

- Produzione dell'energia elettrica acquistata

Tabella riassuntiva

Le fonti emissive identificate ed analizzate per quanto riguarda le emissioni indirette derivanti da energia importata sono riassunte e classificate nella Tabella 2.2.

TABELLA 2.2 – EMISSIONI INDIRETTE DERIVANTI DA ENERGIA IMPORTATA

Categoria	Sottocategoria	Fonte di emissione	
Emissioni indirette derivanti da energia importata	Emissioni indirette da elettricità importata	Acquisto di energia elettrica	

2.3 Emissioni escluse dal rapporto

Risultano escluse dal presente rapporto in quanto non rilevanti le categorie emissive riportate in seguito. Queste categorie sono state escluse in quanto nell'annualità di riferimento l'organizzazione non ha effettuato attività che abbiano portato ad emissioni rilevanti che possano essere identificate all'interno di queste categorie.

EMISSIONI DIRETTE DA PROCESSI INDUSTRIALI

Questa categoria comprende tutte le emissioni derivanti da attività di processo industriali che non prevedano la combustione. A titolo esemplificativo si può considerare la produzione di cemento e calce viva.

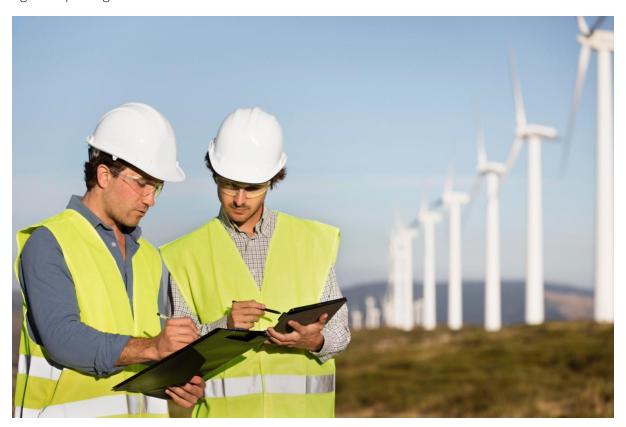
EMISSIONI E RIMOZIONI DIRETTE DA USO DEL SUOLO

All'interno di questa categoria sono incluse tutte le emissioni e rimozioni risultanti dall'utilizzo del suolo, dal cambiamento di uso del suolo e dalla silvicoltura, derivanti dalla biomassa viva presente nella materia organica dei suoli.

EMISSIONI INDIRETTE DA CALORE IMPORTATO

Le emissioni indirette da calore importato si riferiscono alle emissioni di gas serra e altri inquinanti atmosferici associate alla produzione di calore acquistato dall'organizzazione. Queste emissioni si verificano durante il processo di generazione di calore utilizzando fonti di energia come carbone, gas naturale, petrolio o altre fonti non rinnovabili. Questa categoria non considera tutte le emissioni a monte associate a combustibili utilizzati per la generazione del calore, le emissioni generate dalla costruzione della centrale termica e quelle prodotte dal trasporto e dalle perdite di distribuzione.

CAPITOLO 3: INVENTARIO DI GHG QUANTIFICATO DELLE EMISSIONI E RIMOZIONI

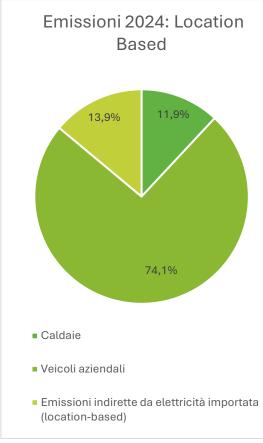

Nel presente capitolo è affrontata la tematica della quantificazione delle emissioni nell'ambito dell'inventario dei gas serra (GHG), un argomento di cruciale importanza per la comprensione e il controllo dell'impatto. Vengono riportati nel dettaglio i risultati dell'analisi delle emissioni differenziati per categoria e per gas serra.

Viene poi illustrato l'approccio metodologico adottato per la quantificazione delle emissioni, mettendo in luce le tecniche di calcolo impiegate e i modelli matematici utilizzati.

Un altro aspetto fondamentale trattato è la selezione dell'anno di riferimento, che rappresenta il punto di partenza per il monitoraggio delle variazioni nel tempo delle emissioni di GHG. Vengono discussi i criteri che hanno guidato tale scelta e l'importanza di stabilire un anno di riferimento che sia rappresentativo e significativo per le analisi successive.

Infine, vengono esplorate le modifiche che possono influenzare la necessità di un riesame dell'anno di riferimento. Queste modifiche possono avere un impatto diretto sulla quantità di emissioni rilevate e, di conseguenza, richiedere un aggiornamento dell'inventario per mantenere l'accuratezza e la pertinenza dei dati.

In sintesi, il capitolo fornisce una panoramica esaustiva e dettagliata del processo di quantificazione delle emissioni di GHG, evidenziando l'importanza di un approccio metodico e scientificamente rigoroso per la gestione efficace dell'inventario.



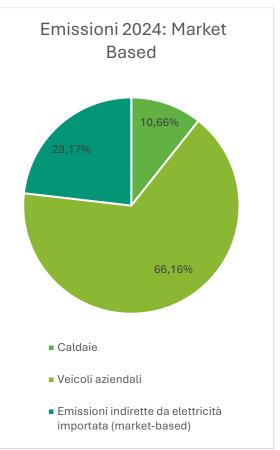

3.1 Tabella riassuntiva

TABELLA 3.1 – EMISSIONI RISULTANTI

Catogoria	Categoria		2024	
Categoria			CO _{2eqTOT} [kg CO _{2eq}]	
	Caldaie	4,05E3	3,24E3	
Emissioni dirette	Impianto di condizionamento	0	0	
	Veicoli aziendali	1,76E4	2,01E4	
Emissioni indirette derivanti da energia importata (market-based)	Emissioni indirette da elettricità importata (market-based)	7,37E3	7,04E3	
Emissioni indirette derivanti da energia importata (location-based)	Emissioni indirette da elettricita importata docation-basedi		3,78E3	
TOTALE SCOPE 1		2,17E4	2,34E4	
TOTALE SCOPE 2 market-based		7,37E3	7,04E3	
TOTALE SCOPE 2 location-based		3,8E3	3,78E3	

3.2 Approccio di quantificazione utilizzato

3.2.1 Modello di quantificazione

L'approccio utilizzato per la quantificazione delle emissioni si basa sull'utilizzo combinato di fattori di emissione e dei dati di attività aziendali. I fattori di emissione rappresentano la quantità di gas serra emessi per unità di attività. Questi parametri sono cruciali in quanto riflettono l'intensità delle emissioni specifiche per ogni processo o prodotto utilizzato. D'altra parte, i dati di attività quantificano il volume dell'attività svolta dall'azienda. Infine, la trasformazione delle emissioni totali di gas serra in emissioni totali di CO₂ equivalente si effettua attraverso l'uso dei valori di potenziale di riscaldamento globale. La formula 3.1 riportata in seguito riassume la procedura di calcolo delle emissioni di uno specifico gas serra di una specifica fonte considerando l'unità di misura in CO₂ equivalente.

3.1
$$Emissioni_{CO2eq,i} = DA_i \times FE_i \times GWP_{GHG,i}$$

Dove:

Emissioni_{CO2eq,i}: Emissioni dello specifico GHG riportate in CO₂ equivalente

DAi: Dato di attività presente per la quantificazione delle emissioni dello specifico GHG

FE_i: Fattore di emissione specifico al GHG e al dato di attività considerato

GWP_{GHG,i}: Potenziale di riscaldamento globale dello specifico GHG

Successivamente, attraverso la formula 3.2, è possibile sommare le emissioni di diversi gas serra di una specifica fonte emissiva e emissioni di gas serra provenienti da fonti emissive differenti. Questa metrica riflette il loro contributo cumulativo al riscaldamento globale, facilitando così la comparazione e l'analisi dell'impatto ambientale complessivo. Questo risultato rappresenta il valore delle emissioni totali dell'inventario GHG.

3.2
$$Emissioni_{CO2eq,TOT} = \sum_{i=1}^{n} \sum_{i=1}^{n} Emissioni_{CO2eq,i,i}$$

Dove:

 $Emissioni_{CO2eq,TOT}$: Emissioni totali di tutte le fonti emissive riportate in CO₂ equivalente $Emissioni_{CO2eq,i,j}$: Emissioni della fonte j dello specifico GHG i, riportate in CO₂ equivalente

3.2.2 Fattore di emissione dell'acquisto di energia

Per la valutazione delle emissioni derivanti dall'acquisto di energia è stato adottato sia un approccio basato sulla posizione ("Location-Based"), sia un approccio basato sul mercato ("Market-Based") in ottica di doppia rendicontazione.

Location-Based: L'approccio si basa sull'utilizzo del fattore di emissione significativo dell'area geografica in cui l'energia è stata consumata. Questo metodo riflette l'intensità media di carbonio dell'elettricità fornita dalla rete, indipendentemente dal fornitore specifico scelto dall'organizzazione.

Market-Based: Questo approccio considera le emissioni effettive relative al contratto in essere tra le aziende rendicontatici e il fornitore di energia. La scelta di valutare questo metodo deriva dal fatto che l'azienda ha la possibilità, attraverso la sottoscrizione di contratti di fornitura appositi, di modificare il proprio impatto risultante dall'acquisto di energia. Questo approccio consente di avere una visione più accurata e basata sulla realtà contrattuale effettiva.

3.2.3 Limiti del modello

L'utilizzo di questo modello di quantificazione delle emissioni presenta alcuni limiti. Innanzitutto, la precisione dei dati di attività e dei fattori di emissione è fondamentale; errori o stime imprecise possono portare a risultati non affidabili. In particolare, è essenziale utilizzare fattori di emissione aggiornati che tengano conto delle variazioni tecnologiche o dei cambiamenti nei processi produttivi specifici per evitare che possano alterare oltremodo l'intensità delle emissioni nel tempo.

Un altro limite è la generalizzazione dei fattori di emissione, i quali potrebbero non riflettere le condizioni specifiche di ogni singola azienda o settore, portando a una sovrastima o sottostima delle emissioni reali.

Nonostante tali limitazioni, se si considerano dati accurati e aggiornati come input, la stima delle emissioni tramite questo modello rimane una metodologia attendibile e funzionale per valutare l'impatto ambientale e identificare opportunità di miglioramento nella gestione delle emissioni.

3.3 Anno di riferimento

L'annualità di riferimento scelta per la quantificazione delle emissioni di gas serra è il 2023, in quanto rappresenta la prima annualità per la quale si dispone di dati sufficienti e quantificabili con metodi consistenti rispetto a quelli utilizzati per l'anno analizzato, ossia per il 2024. Questa scelta è stata dettata dalla necessità di avere un punto di partenza solido e comparabile per l'analisi delle tendenze e l'elaborazione di strategie di riduzione delle emissioni. La disponibilità di dati completi e affidabili per il 2023 ha permesso di stabilire una baseline accurata e di garantire che le metodologie di quantificazione adottate fossero applicabili in maniera uniforme, assicurando così la coerenza e la comparabilità dei dati nel tempo.

RIESAME DELL'INVENTARIO PER L'ANNO DI RIFERIMENTO

Il riesame dell'inventario dell'annualità di riferimento viene effettuato nell'eventualità che vi siano variazioni complessive sostanziali nelle emissioni. Queste sono generalmente derivate da:

- Modifiche strutturali dei confini di rendicontazione o organizzativi
- Modifica nella metodologia di calcolo delle emissioni o modifica sostanziale dei coefficienti di emissione utilizzati
- Scoperta di eventuali errori

Non viene tuttavia ricalcolato l'inventario dell'annualità di riferimento a seguito di cambiamenti del volume produttivo e apertura o chiusura di altre installazioni.

Nel presente documento non è stato effettuato un ricalcolo dell'inventario in quanto primo anno in cui viene definito un anno di riferimento dell'inventario GHG.

3.4 Elenco emissioni

Vengono riportate nelle seguenti tabelle le emissioni risultanti divise per sostanza e per categoria per le due annualità.

All'interno dell'Allegato I vengono riportati i dati di attività e le fonti dai quali sono stati ottenuti.

All'interno dell'Allegato II vengono riportate le assunzioni e le ipotesi effettuate all'interno della presente analisi.

TABELLA 3.4.1 - DETTAGLIO INVENTARIO 2023 PER SCOPE

Sostanza	Compartimento	Unità	Scope 1	Scope 2 LB	Scope 2 MB
Acenaphthene	Aria	μg	0	34,28966	51,68113
Acetaldehyde	Aria	g	27,1306	0,606063	1,436582
Acetic acid	Aria	g	10,8108	6,687148	13,44662
Acetone	Aria	g	0	0,35635	1,361881
Acrolein	Aria	g	9,506003	0	0
Ammonia	Aria	g	224,8077	60,0884	6,810979
Antimony, ion	Aria	mg	0	3,29267	8,335068
AOX, Adsorbable Organic Halogen	Acqua	mg	0	5,799842	22,16552
Arsenic, ion	Aria	mg	41,77683	47,28304	121,5628

Arsenic, ion	Acqua	μg	0	163,3689	624,3544
Barium (II)	Aria	g	0	0,461829	1,169075
Benzaldehyde	Aria	g	7,357757	0	0
Benzene	Aria	g	66,71997	6,414189	8,503567
Benzene, ethyl-	Aria	g	1,236766	0,105797	0,011097
Benzene, hexachloro-	Aria	ng	296,8238	25,39128	2,663256
Benzo(a)pyrene	Aria	mg	21,33348	1,809525	0,305051
Beryllium (II)	Aria	μg	0	168,3665	430,3251
BOD5 (Biological Oxygen Demand)	Acqua	g	0	2,297888	8,781943
Boron	Aria	g	0	5,330989	13,49487
Bromine	Aria	g	2,473531	2,392453	5,542823
Butane	Aria	g	51,256	40,31147	61,03454
Cadmium (II)	Aria	mg	76,82185	17,89686	36,42869
Cadmium (II)	Acqua	mg	0	0,397548	1,519329
Calcium (II)	Aria	g	241,1693	20,67144	2,320716
Carbon dioxide, biogenic	Aria	ton	3,982509	0,752399	0,078918
Carbon dioxide, fossil	Aria	ton	21,54278	3,775014	7,318122
Carbon monoxide, biogenic	Aria	kg	1,319217	0,590583	0,061945
Carbon monoxide, fossil	Aria	kg	24,94932	0,412475	0,77013
Chloride	Acqua	g	0	33,42607	127,7459
Chlorine	Aria	g	7,420594	0,634782	0,066581
Chromium (III)	Aria	mg	328,646	82,34274	184,3157
Chromium (III)	Acqua	mg	0	4,187901	16,00509
Chromium (VI)	Aria	mg	1,979807	5,71242	14,6674

Cobalt (II)	Aria	mg	0	65,19773	228,005
Cobalt (II)	Acqua	mg	0	0,326751	1,248761
COD (Chemical Oxygen Demand)	Acqua	g	0	2,513315	9,605251
Copper, ion	Aria	g	1,023839	0,197389	0,396843
Copper, ion	Acqua	mg	0	3,46899	13,2576
Dinitrogen monoxide	Aria	g	471,3805	99,43094	165,5992
Dioxin, 2,3,7,8 Tetrachlorodibenzo- p-	Aria	μg	1,280153	0,224033	0,318208
DOC, Dissolved Organic Carbon	Acqua	g	0	1,404995	5,369531
Ethane	Aria	g	0,161119	59,82381	90,76457
Ethanol	Aria	g	0	0,727541	2,780478
Fluoride	Acqua	g	0	0,277744	1,061465
Fluorine	Aria	g	2,061276	0,176328	0,018495
Formaldehyde	Aria	g	57,67977	3,777938	8,423849
Heptane	Aria	g	1,611187	0	0
Hexane	Aria	g	0	34,28966	51,68113
Hydrocarbons, aliphatic, alkanes, unspecified	Aria	g	37,51523	7,785853	13,79954
Hydrocarbons, aliphatic, unsaturated	Aria	g	127,7991	14,08397	9,218557
Hydrocarbons, aromatic	Aria	mg	0	14,55056	55,60852
Hydrocarbons, unspecified	Acqua	mg	0	50,75871	193,9869
Hydrochloric acid	Aria	g	0	78,74367	199,4114
Hydrogen fluoride	Aria	g	0	36,38883	92,16783
Hypochlorite	Acqua	g	0	0,957453	3,659143

lodine	Aria	g	0	1,051944	2,662892
Iron, ion	Aria	mg	0	95,74534	365,9143
Iron, ion	Acqua	mg	0	171,8766	656,8685
Lead-210	Aria	kBq	0	0,299334	0,757733
Lead (II)	Aria	g	1,317871	0,263339	0,510556
Lead (II)	Acqua	mg	0	6,823634	26,07819
m-Xylene	Aria	g	10,21027	0,423188	0,044388
Magnesium	Aria	g	14,84119	1,269564	0,133163
Manganese (II)	Aria	g	7,008339	0,717131	0,377626
Manganese (II)	Acqua	mg	0	4,901204	18,73115
Mercury (II)	Aria	mg	43,74925	47,48147	115,0821
Mercury (II)	Acqua	μg	0	171,5483	655,6139
Methane, biogenic	Aria	g	16,49021	118,2383	12,40186
Methane, fossil	Aria	g	157,3504	63,68871	127,4295
Methanol	Aria	g	0	0,727541	2,780478
Molybdenum (VI)	Aria	mg	0	17,50539	58,12791
Nickel (II)	Aria	g	0,295868	0,526526	1,766744
Nickel (II)	Acqua	mg	0	24,17023	92,37245
Nitrate	Acqua	g	9,36936	0	0
Nitrite	Acqua	mg	216,216	0	0
Nitrogen oxides	Aria	kg	75,58457	4,781183	10,36925
Nitrogen, atmospheric	Acqua	g	0	11,16938	42,68652
NMVOC, non- methane volatile organic compounds	Aria	g	531,0744	19,78799	2,075535
o-Xylene	Aria	g	2,148251	0	0
Oils, unspecified	Acqua	mg	0	77,51816	296,2547

PAH, polycyclic aromatic hydrocarbons	Aria	g	1,609448	0,401784	0,570971
Particulates, < 2.5 um	Aria	kg	0,840691	0,400819	0,966406
Particulates, > 10 um	Aria	g	0	98,83922	259,2903
Particulates, > 2.5 um, and < 10um	Aria	g	0	49,64627	136,581
Pentane	Aria	g	86,80864	51,82183	80,25156
Phenol, pentachloro-	Aria	μg	333,9267	28,56518	2,996163
Phosphorus	Aria	g	12,36766	1,05797	0,110969
Phosphorus	Acqua	mg	0	25,32327	96,77911
Platinum	Aria	μg	0	34,69761	3,639386
Polonium-210	Aria	kBq	0	0,547353	1,38557
Potassium-40	Aria	Bq	0	149,6668	378,8667
Potassium (I)	Aria	kg	0,964677	0,082522	0,008656
Propane	Aria	g	14,95146	31,05615	47,48696
Propene	Aria	mg	0	228,0637	577,3207
Propionic acid	Aria	g	1,44144	0,691847	1,042747
Radium-226	Aria	Bq	0	77,11404	195,2066
Radium-228	Aria	Bq	0	40,19623	101,7528
Radon-220	Aria	kBq	0	3,862829	9,77837
Radon-222	Aria	kBq	0	6,856166	17,3557
Selenium (IV)	Aria	mg	0,55131	134,7998	350,1334
Sodium (I)	Aria	g	53,59318	4,994873	2,04907
Strontium (II)	Aria	g	0	0,399112	1,010311
Styrene	Aria	g	3,007549	0	0
Sulfate	Acqua	kg	0,003604	0,273244	1,044267

Sulfide	Acqua	mg	0	73,51874	280,9699
Sulfite	Acqua	g	3,6036	2,466947	9,428043
Sulfur dioxide	Aria	kg	0,227112	6,586601	17,41287
Suspended solids, unspecified	Acqua	g	0	2,080273	7,950272
Thallium (I)	Acqua	mg	0	5,064655	19,35582
Thorium-228	Aria	Bq	0	21,66605	54,84547
Thorium-232	Aria	Bq	0	33,92448	85,87646
Tin, ion	Acqua	μg	0	163,3689	624,3544
TOC, Total Organic Carbon	Acqua	g	0	1,404995	5,369531
Toluene	Aria	g	26,83576	2,676515	4,141724
Uranium-238	Aria	Bq	0	64,28546	162,7323
Vanadium (V)	Aria	g	0	1,478247	5,559728
Vanadium (V)	Acqua	mg	0	49,41691	188,8588
Water, IT	Acqua	m3	0	382,5858	659,205
Water/m3, IT	Aria	m3	0	5,872558	10,63947
Xylene	Aria	g	0	13,14217	33,26811
Zinc (II)	Aria	g	21,94944	1,281357	0,720076
Zinc (II)	Acqua	mg	0	8,630758	32,98456

TABELLA 3.4.2 – DETTAGLIO INVENTARIO 2024 PER SCOPE

Sostanza	Compartimento	Unità	Scope 1	Scope 2 LB	Scope 2 MB
Acenaphthene	Aria	μg	0	34,05714	51,33068
Acetaldehyde	Aria	g	30,741018	0,601954	0,235128
Acetic acid	Aria	g	8,6508	6,641802	8,472655
Acetone	Aria	mg	0	353,934	156,8267

Acrolein	Aria	g	10,887788	0	0
Ammonia	Aria	g	248,73941	59,68093	7,450288
Antimony, ion	Aria	mg	0	3,270342	8,525924
AOX, Adsorbable Organic Halogen	Acqua	mg	0	5,760513	2,552459
Arsenic, ion	Aria	mg	42,793914	46,96241	92,07941
Arsenic, ion	Acqua	μg	0	162,2611	71,8972
Barium (II)	Aria	g	0	0,458697	1,195844
Benzaldehyde	Aria	g	8,4272751	0	0
Benzene	Aria	g	61,867235	6,370694	8,495408
Benzene, ethyl-	Aria	g	1,264874	0,10508	0,013041
Benzene, hexachloro-	Aria	ng	303,56976	25,21909	3,129922
Benzo(a)pyrene	Aria	mg	21,657953	1,797254	0,268009
Beryllium (II)	Aria	μg	0	167,2248	171,4164
BOD5 (Biological Oxygen Demand)	Acqua	g	0	2,282306	1,01128
Boron	Aria	g	0	5,294839	13,80388
Bromine	Aria	g	2,529748	2,37623	5,673124
Butane	Aria	g	41,293097	40,03811	60,641
Cadmium (II)	Aria	mg	84,449713	17,7755	21,4825
Cadmium (II)	Acqua	μg	0	394,8525	174,9575
Calcium (II)	Aria	g	246,65043	20,53127	2,56112
Carbon dioxide, biogenic	Aria	ton	4,0730207	0,747297	0,092746
Carbon dioxide, fossil	Aria	ton	23,281148	3,749416	6,997803
Carbon monoxide, biogenic	Aria	kg	1,3491989	0,586578	0,0728

Carbon monoxide, fossil	Aria	kg	28,429165	0,409678	0,727575
Chloride	Acqua	g	0	33,1994	14,71051
Chlorine	Aria	g	7,5892439	0,630477	0,078248
Chromium (III)	Aria	mg	356,39767	81,78436	132,5781
Chromium (III)	Acqua	mg	0	4,159503	1,843058
Chromium (VI)	Aria	mg	2,0653672	5,673684	13,52879
Cobalt (II)	Aria	mg	0	64,75562	62,15085
Cobalt (II)	Acqua	μg	0	324,5358	143,8004
COD (Chemical Oxygen Demand)	Acqua	g	0	2,496272	1,106088
Copper, ion	Aria	g	1,0614411	0,19605	0,177479
Copper, ion	Acqua	mg	0	3,445467	1,526672
Dinitrogen monoxide	Aria	g	512,29516	98,75669	148,8425
Dioxin, 2,3,7,8 Tetrachlorodibenzo -p-	Aria	μg	1,3087666	0,222514	0,279734
DOC, Dissolved Organic Carbon	Acqua	g	0	1,395467	0,618326
Ethane	Aria	g	0,18453875	59,41814	90,193
Ethanol	Aria	g	0	0,722608	0,320185
Fluoride	Acqua	mg	0	275,8602	122,2325
Fluorine	Aria	g	2,1081233	0,175133	0,021736
Formaldehyde	Aria	g	62,919205	3,752319	4,775409
Heptane	Aria	g	1,8453875	0	0
Hexane	Aria	g	0	34,05714	51,33068
Hydrocarbons, aliphatic, alkanes, unspecified	Aria	g	38,367844	7,733056	9,118964

Hydrocarbons, aliphatic, unsaturated	Aria	g	130,70364	13,98846	9,351917
Hydrocarbons, aromatic	Aria	mg	0	14,45189	6,40357
Hydrocarbons, unspecified	Acqua	mg	0	50,41451	22,33846
Hydrochloric acid	Aria	g	0	78,2097	203,7635
Hydrogen fluoride	Aria	g	0	36,14207	94,13547
Hypochlorite	Acqua	g	0	0,950961	0,421367
Iodine	Aria	g	0	1,044811	2,723867
Iron, ion	Aria	mg	0	95,09608	42,13667
Iron, ion	Acqua	mg	0	170,7111	75,64135
Lead-210	Aria	kBq	0	0,297304	0,775084
Lead (II)	Aria	g	1,3830462	0,261554	0,357324
Lead (II)	Acqua	mg	0	6,777362	3,00302
m-Xylene	Aria	g	11,087755	0,420318	0,052165
Magnesium	Aria	g	15,178488	1,260955	0,156496
Manganese (II)	Aria	g	7,1676192	0,712268	0,341964
Manganese (II)	Acqua	mg	0	4,867968	2,156976
Mercury (II)	Aria	mg	47,845643	47,15949	116,8997
Mercury (II)	Acqua	μg	0	170,385	75,49688
Methane, biogenic	Aria	g	16,864986	117,4365	14,57496
Methane, fossil	Aria	g	130,47012	63,25683	103,2219
Methanol	Aria	g	0	0,722608	0,320185
Molybdenum (VI)	Aria	mg	0	17,38669	22,3172
Nickel (II)	Aria	g	0,30854224	0,522955	0,457979
Nickel (II)	Acqua	mg	0	24,00633	10,6371

Nitrate	Acqua	g	7,49736	0	0
Nitrite	Acqua	mg	173,016	0	0
Nitrogen oxides	Aria	kg	85,97132	4,748762	9,353511
Nitrogen, atmospheric	Acqua	g	0	11,09364	4,915544
NMVOC, non- methane volatile organic compounds	Aria	g	596,64319	19,6538	2,439218
o-Xylene	Aria	g	2,4605186	0	0
Oils, unspecified	Acqua	mg	0	76,9925	34,11505
PAH, polycyclic aromatic hydrocarbons	Aria	g	1,5385158	0,39906	0,560655
Particulates, < 2.5 um	Aria	kg	0,90984971	0,398101	0,943881
Particulates, > 10 um	Aria	g	0	98,16898	240,7923
Particulates, > 2.5 um, and < 10um	Aria	g	0	49,30962	110,3861
Pentane	Aria	g	69,575477	51,47043	79,86478
Phenol, pentachloro-	Aria	μg	341,51597	28,37148	3,521162
Phosphorus	Aria	g	12,64874	1,050796	0,130413
Phosphorus	Acqua	mg	0	25,15156	11,14455
Platinum	Aria	μg	0	34,46232	4,277092
Polonium-210	Aria	kBq	0	0,543641	1,417297
Potassium-40	Aria	Bq	0	148,6519	387,542
Potassium (I)	Aria	kg	0,98660171	0,081962	0,010172
Propane	Aria	g	12,149531	30,84556	46,95829
Propene	Aria	mg	0	226,5172	590,5402
Propionic acid	Aria	g	1,15344	0,687155	1,035676

Radium-226	Aria	Bq	0	76,59113	199,6764
Radium-228	Aria	Bq	0	39,92366	104,0827
Radon-220	Aria	kBq	0	3,836635	10,00228
Radon-222	Aria	kBq	0	6,809673	17,75312
Selenium (IV)	Aria	mg	0,63144767	133,8857	333,7073
Sodium (I)	Aria	g	54,811206	4,961002	0,745711
Strontium (II)	Aria	g	0	0,396405	1,033445
Styrene	Aria	g	3,4447237	0	0
Sulfate	Acqua	g	2,8836	271,3906	120,252
Sulfide	Acqua	mg	0	73,02021	32,35494
Sulfite	Acqua	g	2,8836	2,450218	1,085681
Sulfur dioxide	Aria	kg	0,23504763	6,541936	14,89154
Suspended solids, unspecified	Acqua	g	0	2,066166	0,915509
Thallium (I)	Acqua	mg	0	5,030311	2,22891
Thorium-228	Aria	Bq	0	21,51913	56,10132
Thorium-232	Aria	Bq	0	33,69443	87,84286
Tin, ion	Acqua	μg	0	162,2611	71,8972
TOC, Total Organic Carbon	Acqua	g	0	1,395467	0,618326
Toluene	Aria	g	24,244653	2,658365	4,250563
Uranium-238	Aria	Bq	0	63,84953	166,4585
Vanadium (V)	Aria	g	0	1,468223	0,800066
Vanadium (V)	Acqua	mg	0	49,0818	21,74794
Water, IT	Acqua	m3	0	379,9914	653,5063
Water/m3, IT	Aria	m3	0	5,832735	10,62978
Xylene	Aria	g	0	13,05305	34,02988

Zinc (II)	Aria	g	23,623327	1,272668	0,636179
Zinc (II)	Acqua	mg	0	8,572232	3,79832

TABELLA 3.4.3 – DETTAGLIO EMISSIONI 2023 PER SCOPE

Sostanza	Compartimento	Unità	Scope 1	Scope 2 LB	Scope 2 MB
Butane	Aria	kg CO2-eq	0,000308	0,000242	0,000366
Carbon dioxide, fossil	Aria	kg CO2-eq	21542,78	3775,014	7318,122
Dinitrogen monoxide	Aria	kg CO2-eq	128,6869	27,14465	45,20859
Ethane	Aria	kg CO2-eq	7,04E-05	0,026143	0,039664
Methane, fossil	Aria	kg CO2-eq	4,689043	1,897923	3,7974
Propane	Aria	kg CO2-eq	0,000299	0,000621	0,00095
то	TALE	kg CO2-eq	21676,16	3804,084	7367,168

TABELLA 3.4.4 – DETTAGLIO EMISSIONI 2024 PER SCOPE

Sostanza	Compartimento	Unità	Scope 1	Scope 2 LB	Scope 2 MB
Butane	Aria	kg CO2-eq	0,000248	0,00024	0,000364
Carbon dioxide, fossil	Aria	kg CO2-eq	23281,15	3749,416	6997,803
Dinitrogen monoxide	Aria	kg CO2-eq	139,8566	26,96058	40,63399
Ethane	Aria	kg CO2-eq	8,06E-05	0,025966	0,039414
Methane, fossil	Aria	kg CO2-eq	3,88801	1,885053	3,076014
Propane	Aria	kg CO2-eq	0,000243	0,000617	0,000939
то	TALE	kg CO2-eq	23424,89	3778,288	7041,553

33

3.5 Emissioni Biogeniche

Col termine emissioni biogeniche sono intese tutte le emissioni di CO₂ risultanti dall'ossidazione di carbonio biogenico, ovvero carbonio derivato dalla biomassa.

Il quantitativo di CO2 biogenica viene riportato separatamente in questo apposito paragrafo e non viene ulteriormente riportato all'interno del Capitolo 3.

Le emissioni biogeniche presenti sono dovute alla combustione di biomasse per la generazione di energia elettrica acquistata dall'organizzazione e dalla combustione di pellet utilizzato nella stufa aziendale.

TABELLA 3.5 - DETTAGLIO EMISSIONI BIOGENICHE 2023

Sostanza	Compartimento	Unità	Scope 1	Scope 2 LB	Scope 2 MB
Carbon dioxide, biogenic	Aria	kg CO2-eq	3982,509	752,3988	78,9181
Methane, biogenic	Aria	kg CO2-eq	0,491408	3,523502	0,369575
TOTALE		kg CO2-eq	3983,001	755,9224	79,28768

TABELLA 3.5 – DETTAGLIO EMISSIONI BIOGENICHE 2024

Sostanza	Compartimento	Unità	Scope 1	Scope 2 LB	Scope 2 MB
Carbon dioxide, biogenic	Aria	kg CO2-eq	4073,021	747,2968	92,74641
Methane, biogenic	Aria	kg CO2-eq	0,502577	3,499609	0,434334
TOTALE		kg CO2-eq	4073,523	750,7964	93,18074

CAPITOLO 4: QUALITÀ DEI DATI

4.1 Introduzione all'analisi di qualità dei dati

Valutare la qualità dei dati in un'analisi di inventario dei gas serra è fondamentale per garantire la precisione e l'affidabilità dei risultati. Dati di bassa qualità possono portare a stime inaccurate delle emissioni, compromettendo la capacità di individuare e affrontare efficacemente le fonti di emissione. Inoltre, una valutazione accurata della qualità dei dati, permette di identificare eventuali lacune nelle informazioni disponibili e di adottare misure correttive per migliorare la completezza e l'attendibilità dei dati. Questo processo non solo contribuisce a fornire una base solida per la pianificazione e la valutazione delle politiche ambientali, ma anche a migliorare la trasparenza e la credibilità dell'analisi agli occhi degli stakeholder e del pubblico.

INCERTEZZE ANALIZZATE

Le incertezze negli inventari dei gas serra si suddividono in incertezze scientifiche e di stima. Le prime derivano da una comprensione insufficiente della scienza dietro i processi di emissione o rimozione, mentre le seconde si verificano nella quantificazione delle emissioni di gas serra. Le incertezze di stima includono incertezze di modello legate alle equazioni matematiche usate nei modelli di stima, e incertezze di parametro, associate ai dati utilizzati come input nei modelli.

Le incertezze di parametro possono essere ulteriormente suddivise in incertezze statistiche e sistematiche. Le incertezze statistiche si riferiscono alla variazione casuale nei dati dovuta alla natura del processo di misurazione o campionamento. Queste possono essere valutate mediante analisi statistica dei dati raccolti. D'altro canto, le incertezze sistematiche, riguardano gli errori sistematici o le discrepanze tra il vero valore e quello misurato, che possono derivare da difetti nell'apparecchiatura di misurazione, dalla calibrazione inadeguata o da errori nella procedura di misurazione.

Nel contesto del presente inventario delle emissioni di gas serra, le incertezze scientifiche e di modello non sono state quantificate poiché derivano da processi che esulano dalla sfera di controllo diretto.

4.2 Limitazioni dell'analisi dell'incertezza

Lo studio dell'incertezza dell'inventario aziendale è soggetto a diverse limitazioni. Questo è dovuto al fatto che sono presenti limiti pratici che consentono di affrontare solo le incertezze dei parametri e di conseguenza le stime dell'incertezza saranno inevitabilmente imperfette. Inoltre, non è sempre garantita la disponibilità di dati campione completi e robusti per valutare l'incertezza statistica di ogni parametro. Spesso, si dispone solo di un singolo punto dati per la maggior parte dei parametri, il che può rendere difficile una valutazione accurata dell'incertezza. Anche l'uso del giudizio esperto per quantificare alcune incertezze sistematiche può essere problematico, poiché è difficile ottenere giudizi comparabili e coerenti tra diverse aziende o categorie di fonti. Queste limitazioni indicano che, nonostante gli sforzi più meticolosi, le stime dell'incertezza per gli inventari di gas serra devono essere considerate altamente incerte e spesso soggettive. Le stime di incertezza non possono essere interpretate come metriche oggettive che possono essere utilizzate per confrontare la qualità tra

diverse categorie di fonti o aziende, se non in casi molto specifici dove le strutture operativamente simili utilizzano metodologie di stima identiche.

4.3 Stima qualitativa

La metodologia utilizzata all'interno di questo inventario, laddove l'incertezza del dato non sia definita, si basa su una stima qualitativa. In questo tipo di stima, ogni dato viene analizzato secondo degli aspetti rilevanti quali affidabilità, completezza, rappresentatività geografica, rappresentatività tecnologica e rappresentatività temporale. Per ogni aspetto rilevante viene assegnato al dato un grado che rispecchi la bontà del dato secondo quell'aspetto. Ad ogni grado è attribuito un valore quantitativo che identifica numericamente l'incertezza relativa allo specifico aspetto rilevante. Una volta identificati tutti i gradi dei vari aspetti rilevanti viene identificato un valore quantitativo dell'incertezza complessiva del dato ottenuto tramite valutazioni qualitative.

Vengono riportati nel dettaglio gli aspetti fondamentali:

- Affidabilità: Valutazione su verifiche di validità generale del dato.
- Completezza: Valutazione su quanto è rappresentativo rispetto alla totalità.
- Rappresentatività Geografica: Verifica che i dati coprano in modo equilibrato diverse aree geografiche rilevanti.
- Rappresentatività Tecnologica: Verifica che i dati riflettano adeguatamente le diverse tecnologie o metodologie coinvolte nei processi analizzati.
- Rappresentatività Temporale: Verifica che i dati siano aggiornati e coprano un periodo temporale significativo per comprendere le variazioni nel tempo.

La Tabella 4.1, riportata in una discussione a Zurigo il 13/09/2013, mostra il processo di valutazione del grado del dato per ogni specifico aspetto rilevante.

TABELLA 4.1 – PROCESSO DI VALUTAZIONE QUALITATIVO

	l l	П	III	IV	٧
Affidabilità	Dati provenienti da fonti autorevoli e ampiamente riconosciute	Dati verificati parzialmente basati su assunzioni	Dato non verificato basato su stime di entità verificate	Dato non verificato proveniente da fonti non accreditate	Dato proveniente da fonti anonime o non verificabili
Completezza	Dato rappresentativo di tutti i siti rilevanti che regoli inoltre la normale fluttuazione dei dati	Dato rappresentativo di più del 50% dei siti rilevanti che consideri un periodo adeguato per regolare la fluttuazione	Dato rappresentativo di meno del 50% dei siti rilevanti che consideri un periodo adeguato oppure dato rappresentativo di più del 50% dei siti rilevanti ma che consideri un più breve periodo	Dato rappresentativo di uno specifico sito o di alcuni siti ma per un breve periodo	Rappresentatività sconosciuta o dati di un piccolo numero di siti o per ancor più brevi periodi
Rappresentatività geografica	Dati dell'area in analisi	Dati medi di un'area più grande che contenga l'area in analisi	Dati di aree con condizioni di produzione similari	Dati di aree con condizioni di produzione leggermente simili	Dati di aree non note o aree non coerenti con l'area in analisi
Rappresentatività tecnologica	Dati primari dei processi in analisi	Dati secondari dei processi in analisi	Dati di processi simili ma con tecnologie differenti	Dati di processi collegati	Dati di processi collegati ottenuti in laboratorio o con tecnologie differenti
Rappresentatività temporale	Differenza minore di 3 anni	Differenza minore di 6 anni	Differenza minore di 10 anni	Differenza minore di 15 anni	Differenza sconosciuta o maggiore di 15 anni

Una volta assegnato lo specifico grado qualitativo, attraverso il software SimaPro grazie alla relativa matrice pedigree, viene associato un valore quantitativo alla deviazione standard per rappresentare l'incertezza del dato.

La Tabella 4.2 rappresenta un esempio di matrice pedigree ed illustra l'assegnazione di un valore quantitativo a ciascun grado rispetto agli aspetti rilevanti, basandosi sulla valutazione nella tabella precedente.

TABELLA 4.2 - ESEMPIO DI MATRICE PEDIGREE

	1	2	3	4	5
Affidabilità	1.00	1.05	1.10	1.20	1.50
Completezza	1.00	1.02	1.05	1.10	1.20
Rappresentatività geografica	1.00	1.01	1.02	1.05	1.10
Rappresentatività tecnologica	1.00	1.10	1.20	1.50	2.00
Rappresentatività temporale	1.00	1.03	1.10	1.20	1.50

Una volta assegnato ad ogni dato un valore quantitativo per ogni aspetto viene approssimata la varianza complessiva del dato con la formula 4.3 e l'incertezza tipo associata come la radice quadrata della varianza.

4.3
$$u_i^2 = exp^{\sqrt{[ln(U_1)]^2 + [ln(U_2)]^2 + [ln(U_3)]^2 + [ln(U_4)]^2 + [ln(U_5)]^2}}$$

 u_i^2 : varianza Dove

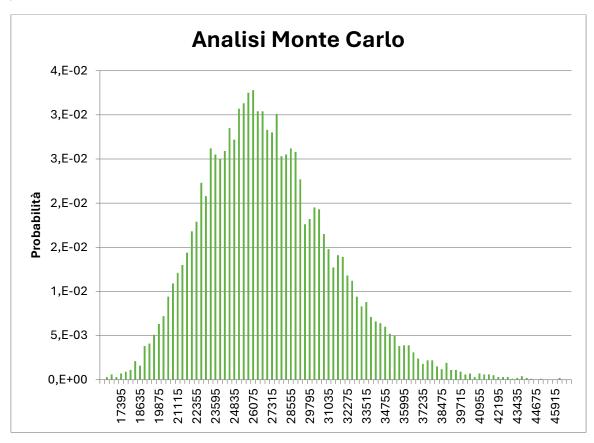
 u_i : deviazione standard

 U_1 : incertezza relativa all'affidabilità U_2 : incertezza relativa alla completezza

 U_3 : incertezza relativa alla rappresentatività geografica U_4 : incertezza relativa alla rappresentatività tecnologica

 U_5 : incertezza relativa alla rappresentatività temporale

Dopo aver identificato e quantificato le incertezze associate ai dati, si procede alla stima dell'incertezza complessiva dello studio attraverso l'analisi Monte Carlo. Questa tecnica statistica si basa sulla generazione di elevate simulazioni casuali, variando i parametri d'ingresso secondo le loro distribuzioni di probabilità, per ottenere una stima probabilistica dell'output finale. In questo modo, è


possibile determinare l'intervallo di confidenza delle emissioni totali e valutare il grado di variabilità dei risultati, migliorando la comprensione del rischio associato alle stime di emissione.

4.4 Valutazione dell'incertezza

Nello studio sono stati utilizzati i valori di incertezza presenti nel database ECOINVENT per ogni processo emissivo considerato. Per stimare l'incertezza dei dati primari forniti dall'azienda è stata considerata una distribuzione lognormale con SD^2 valutato attraverso la Pedigree Matrix presente all'interno del software SimaPro.

Per l'analisi di incertezza viene studiato lo scenario con Scope 2 calcolato secondo metodo locationbased.

A seguito dell'analisi Monte Carlo risulta la seguente distribuzione di probabilità utilizzata per valutare il grado di incertezza dell'inventario.

Media	Mediana	SD	CV	SEM
2,71E4	2,67E4	4,27E3	15,8%	42,7

Dove:

- SD: Deviazione standard
- CV: Coefficiente di variazione
- SEM: Errore standard della media

CAPITOLO 5: CONSIDERAZIONI FINALI

5.1 Tracciabilità delle prestazioni interne

Per tenere traccia delle prestazioni interne e al fine di valutare i risultati nelle diverse annualità viene introdotto uno specifico indicatore prestazionale e una metodologia per il calcolo della variazione di questo indicatore.

EMISSIONI PER UNITÀ ECONOMICA

Nel presente contesto, si introduce l'indicatore di emissioni per unità economica k_e , che rappresenta la quantità di inquinanti emessi in relazione al fatturato aziendale. L'obiettivo di questo indicatore è riflettere l'emissività aziendale considerando il volume lavorato nella specifica annualità. Il calcolo dell'indicatore avviene mediante il rapporto tra il totale delle emissioni risultanti dall'inventario delle emissioni di gas serra (GHG) e il fatturato aziendale.

Viene riportato nella formula 5.1 il calcolo dell'indicatore k_e .

$$5.1 k_e = \frac{co_{2eqTOT,LB}}{F}$$

Dove: k_e : Indicatore emissioni per unità economica

 ${\it CO}_{\it 2eqTOT,LB}$: CO₂ equivalente totale ottenuta come somma di Scope 1 e Scope 2 LB

F: Fatturato

RAPPORTO SCOPE 1 E 2

Viene introdotto successivamente l'indicatore $k_{s\prime}$, che rappresenta il rapporto tra le emissioni di Scope 2 e le emissioni di Scope 1. Questo indicatore viene utilizzato per comprendere immediatamente il peso relativo dello scope 2 rispetto alle emissioni dirette aziendali. E quanto l'azienda possa influenzare i risultati dell'inventario delle emissioni di gas serra attraverso modifiche del proprio contratto di fornitura energetica.

Il calcolo dell'indicatore k_s , riportato nella formula 5.2, avviene mediante il rapporto tra le emissioni di Scope 2 – Location based e di Scope 1.

$$k_{S} = \frac{co_{2eq,tot,SCOPE2}}{co_{2eq,tot,SCOPE1}}$$

Dove: k_s : indicatore emissioni dirette

CO_{2eq,tot,SCOPE1}: CO₂ equivalente totale considerando le emissioni Scope 1

CO_{2eq,tot,SCOPE2}: CO₂ equivalente totale considerando le emissioni Scope 2 LB

VARIAZIONE PERCENTUALE

La variazione percentuale degli indicatori viene calcolata secondo la formula seguente:

$$Variazione \% = \frac{k_{2024} - k_{2023}}{k_{2023}}$$

Viene riportato all'interno della Tabella 5.1 il valore degli indicatori nel tempo.

TABELLA 5.1 - ANALISI DEGLI INDICATORI

	2023	2024	Variazione %
k _e	0,00477 kgCO _{2eq} /€ _{Fatturato}	0,00465 kgCO _{2eq} /€ _{Fatturato}	-2,6%
k _s	0,175	0,161	-8,1%

5.2 Risultati

Considerando Scope 1 e Scope 2 Location Based, le emissioni globali per il 2024 risultano di circa 27,2 t CO_{2eq} . Se si valutano le emissioni Scope 2 in ottica Market based le emissioni totali Scope 1 e Scope 2 variano per un totale di 30,5 t CO_{2eq} , con un aumento complessivo di circa il 11%. Questo è dovuto al fatto che per lo scenario market based l'analisi è stata modellata considerando l'acquisto di energia elettrica secondo residual mix italiano, non essendo presente nessun tipo di garanzia d'origine rispetto all'acquisto di energia elettrica.

Lo Scope 1 è composto dalle emissioni derivanti dal parco veicoli aziendali, che pesa per circa l'86% e dalle emissioni derivanti dalla combustione delle caldaie e stufe a pellet, che pesano per circa il 14%.

Rispetto al 2023 le emissioni di Scope 1 sono incrementate complessivamente dell'8,1% a seguito di un incremento nei km percorsi dai veicoli aziendali e quindi delle relative emissioni (+14 %) e da una diminuzione delle emissioni dovute al riscaldamento (-20%). Lo Scope 2, sia market based che location based sono diminuiti rispettivamente di circa -4,4% e -0,7% a fronte di una lieve diminuzione dell'elettricità elettrica totale acquistata dalla rete.

L'indicatore k_e, che rappresenta la misura le emissioni complessive Scope 1 e Scope 2 (location based) rapportate al fatturato, è passato da 0,00477 tCO2eq/€ nel 2023 a 0,00465 tCO2eq/€ nel 2024, con una variazione di -2,6%. Questo è legato alla crescita delle emissioni (7%) e alla crescita del fatturato aziendale (9,6%), in cui si evidenzia che all'interno dell'azienda c'è stata una lieve diminuzione delle emissioni in termini percentuali rispetto al fatturato, ma non in termini assoluti.

L'indicatore k_s , rappresenta il rapporto tra le emissioni Scope 2 (location based) e Scope 1, diminuisce da 0,175 a 0,161 (-8 %) ma rimanendo comunque molto inferiore all'unità, segnalando una maggiore incidenza delle emissioni dirette rispetto a quelle indirette da elettricità importata.

È importante sottolineare che le considerazioni effettuate riguardano le sole emissioni Scope 1 e Scope 2 e non comprendono le emissioni Scope 3 che, se calcolate, potrebbero alterare notevolmente le emissioni totali annuali aziendali.

Vengono quindi riportate nella Tabella 5.2 le emissioni totali suddivise per Scope dell'annualità considerata.

TABELLA 5.2 - EMISSIONI AZIENDALI 2024 PER SCOPE

Non calcolato

5.3 Verifica dell'inventario

Il presente documento non è stato sottoposto a verifica da parte di un ente terzo. Tuttavia, al fine di garantire maggiore trasparenza ed affidabilità, sarebbe opportuno sottoporre a verifica questo documento. Questo processo consente di confermare l'accuratezza delle informazioni contenute.

5.4 Conformità col GHG Protocol

Il presente documento è stato redatto in conformità al GHG Protocol, il quale definisce i principi e i requisiti per la quantificazione e rendicontazione delle emissioni e delle rimozioni di gas serra a livello di organizzazione. Questa guida fornisce una metodologia scientifica e sistematica per monitorare e verificare oggettivamente gli inventari di gas serra, consentendo alle organizzazioni di attuare politiche di Carbon Management e di comunicare il proprio impegno verso la sostenibilità ambientale ai propri stakeholder.

ALLEGATO 1 – ASSUNZIONI E IPOTESI

Vengono riportate all'interno del presente allegato le principali ipotesi e le assunzioni considerate durante l'analisi.

Rete elettrica - Market Based

Non essendo presente un contratto di fornitura specifico che certifichi la tipologia di energia elettrica acquistata nell'annualità rendicontata, l'emissività della rete elettrica è stata modellata a partire dal residual mix italiano 2023 e 2024 pubblicato da AIB (Association of issuing bodies).). Per le fonti rinnovabili e nucleare è stato assunto un fattore di emissione pari a zero. Per la produzione elettrica da fonti di energia non specificate 2023 è stata assunta una produzione tramite centrali al carbone, in ottica cautelativa. Per il 2024, in quanto il totale di energia da fonti fossili non specificato è molto alto (68,8% circa) è stata assunta una quantità percentuale di gas naturale uguale al 2023 e la rimanente parte non specificata è stata assunta come produzione tramite centrali al carbone. È stato successivamente modellata la produzione dalle fonti specificate utilizzando il database di ECOINVENT.

Rete elettrica - Location Based

L'emissività della rete elettrica è stata modellata a partire dai dati di Terna dei rapporti annuali riguardanti il bilancio di energia elettrica annuale 2023 e il comunicato del GSE 2023 ("Composizione del mix energetico iniziale nazionale utilizzato per la produzione dell'energia elettrica immessa nel sistema elettrico italiano nel 2023").

In particolare, dai dati GSE è stato valutato lo share energetico produttivo nazionale. Per il calcolo della biomassa, siccome non esplicitata sul documento GSE, è stata ricavata incrociando i dati GSE (energia rinnovabile) e i dati Terna (energia termica). Tramite i dati Terna 2023 è stato valutato l'acquisto di energia elettrica dall'estero e questo è stato valutato assumendo una composizione energetica come da produzione elettrica europea.

Una volta ottenute quindi tutte le varie modalità di produzione percentuali di energia elettrica è stato successivamente modellata la produzione dalle fonti specificate utilizzando il database di ECOINVENT.

Processi di combustione – gas naturale

Per la valutazione delle emissioni risultanti dai processi di combustione è stata effettuata una stima a partire dal quantitativo di combustibile consumato utilizzando come processo di riferimento il processo di combustione presentato sul database di ECOINVENT. In particolare, per la combustione del gas naturale sono state valutate le emissioni dal processo di generazione di calore tramite

centrale termica a gas naturale in Europa e riscalate considerando l'effettivo consumo di gas naturale dell'organizzazione

Processi di combustione - Pellet

L'azienda è dotata di un impianto di riscaldamento a pellet. È stato valutato il consumo di pellet aziendale acquistato in kg e le emissioni sono modellate a partire dal database ECOINVENT considerando il dato globale della combustione di pellet in impianti di generazione di calore e potenza da 3kW.

Impianti di condizionamento

Viene assunto nullo il contributo degli impianti di condizionamento non monitorati tramite documentazione F-GAS.

Veicoli aziendali

Il processo di combustione mobile di gasolio e benzina è basato sul database di ECOINVENT. Per il gasolio viene considerata la combustione all'interno di camion EURO 4 da 3,5 – 7,5 ton. Per la benzina viene considerata la combustione all'interno di auto EURO 5 di taglia media per il trasporto passeggeri.

- Densità gasolio: All'interno del presente rapporto è stato utilizzato un valore di densità del gasolio pari a 0,85 kg/l con una distribuzione di probabilità triangolare (minimo 0,82 kg/l, e massimo 0,88 kg/l).
- Densità benzina: All'interno del presente rapporto è stato utilizzato un valore di densità del gasolio pari a 0,74 kg/l con una distribuzione di probabilità triangolare (minimo 0,72 kg/l, e massimo 0,76 kg/l).

ALLEGATO 2 - DATI UTILIZZATI

Al fine di calcolare i risultati riportati nel presente documento sono stati utilizzati i seguenti dati primari aziendali con la relativa analisi di incertezza riportato in tabella.

TABELLA A2.1 – DATI AZIENDALI

Descrizione del dato	Valore 2023	Valore 2024	Unità di misura	Varianza (SD^2)	Input Pedigree Matrix SimaPro	Fonte del dato
Consumo di gas	2002	1602	SMC	1,05	(1,1,1,1,1,na)	Bollette
Consumo pellet	2200	2250	kg	1,05	(1,1,1,1,1,na)	Dato aziendale
Consumi elettrici sede 1	8939	9570	Kwh	1,05	(1,1,1,1,1,na)	Bollette
Consumi elettrici sede 2	5218	4491	Kwh	1,05	(1,1,1,1,1,na)	Bollette
Impianti di condizionamento non monitorati tramite F- GAS	10	10	N°	1,21	(4,1,1,1,1,na)	Dato aziendale
Consumo gasolio	6486,6	7428,8	litri	1,05	(1,1,1,1,1,na)	Dato aziendale
Fatturato aziendale	5.341.799 ,00	5.852.810 ,00	Euro	-	-	Dato aziendale

CARBON FOOTPRINT 2024

ALA SRL

Via O. Fallaci, 38 25030 Castel Mella (BS)

